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BY 
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ABSTRACI 

The simple relation between representations of the covering groups of SL2 and 
GIa makes it possible to fuse and extend the recent metaplectic results of 
Shimura, Waldspurger, Flicker, and ourselves. By giving a new (purely local and 
L-function theoretic) treatment of the Waldspurger-Shintani correspondence, 
we also simplify some of Waldspurger's original results. 

Introduction 

In 1973, G. Shimura used L-functions to prove the existence of an intriguing 

correspondence between holomorphic cusp forms of half-integral and even- 

integral weight ([12]). Shortly afterwards, T. Shintani and S. Niwa gave a more 

direct construction of Shimura's correspondence using theta-series (or a Well 

representation) attached to a quadratic form in 3-variables (see [13] and [I0]). 

More recently, all these works have been generalized to the context of 

representations and adeles. First the present authors ([3]) extended Shimura's 

L-function theory to arbitrary representations of the metaplectic cover of GL2. 

Then Flicker ([1]) exploited the Selberg trace formula to obtain still stronger 

results for n-fold covers of GL2. Finally J.-L. Waldspurger in [16] gave a detailed 

and adelic analysis of Shintani's construction, thereby obtaining surprising new 

results for the L-functions of GL2 as well. 

The remarks of the present paper are intended to complement all the 

aforementioned works. Our purpose is to make completely explicit the relation 

between the correspondence of Shimura and Shintani-Waldspurger and to 

explain how Flicker's work makes possible shorter proofs of some of 

Waldspurger's most important results. 
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Shimura's correspondence (or rather its generalization in [3] or [I]) deals with 

a metaplectic cover of GI-,2, whereas the Shintani-Waldspurger correspondence 

deals with the metaplectic cover of SL2. Thus it is necessary to first make a 

comparison of the theory of representations of these covering groups. This 

analysis is carried out in w Our observation that the process of induction gives a 

simple correspondence between the irreducible representations of these groups 

makes it possible to translate Flicker's strong multiplicity one result for the 

covering groups of GI_a ([1], p. 180) into a similar strong multiplicity one result 

for the metaplectic cover of SL2(A) (Theorem 1.4 of the present paper). This 
metaplectic result was first conjectured in [17] and is now proved by completely 

different methods in [18]; it is to be contrasted to the situation for SL2, where 

strong multiplicity one fails (cf. [9] and w below). 

In w we describe how the correspondences of Shimura and Shintani- 

Waldspurger are related (The "Key Diagram" (2.0)). Our approach is purely 

local: we reformulate Waldspurger's correspondence in terms of the local 

Shimura type zeta-functions analyzed in [3]. As a corollary, we obtain a simple 

derivation of the e-factor assertions of w of [3]. Global consequences of the 

"Key Diagram", again using [1], are described in w 

Finally, in w we introduce a notion of "near-equivalence" (or "L-  

indistinguishability") which seems appropriate for cuspidal representations of 

the metaplectic cover of SLdA ), and we describe the resulting "L-packets" 
following [18]. 

The first-named author would like to thank Tel Aviv University and the 

Hebrew University of Jerusalem for the hospitality shown him during the year 
(1981-82) this paper was written. 

Notation and preliminaries 

Throughout, we follow the notation and definitions of [3] and [4], to which the 
reader is referred for details. In particular, 

F is a local or global field, 

G = GL2 (regarded as an algebraic group over F), 
S = SI~ ,  

and (~ is the 2-fold covering group of G described in [3] as a group of pairs 

{(g, s r : g E G, s r E { -+ 1}}. If H C G is any subgroup, then/-f denotes the inverse 
image of H under the natural projection of (~ onto G; if the extension (~ 

"splits" over H, then /~ is the direct product of { +-1} with a subgroup of (~ 
which we again denote by H. 
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For the purposes of the present paper, we also need to introduce an 
intermediate group S C G* C G as follows: if G ,  denotes the "multiplicative 
group" GL~, then 

G* = {g E G :det g ~G~}. 

In particular, when F is a local field, 

G~ = {g E GL2(F) : det g E (F*)2}. 

Finally, we recall that a representation of (~ (or any subgroup H thereof) is 

called genuine if its restriction to { -  1} transforms according to the non-trivial 
character of { -  1}. 

w Induced representations and the strong multiplicity one theorem for SA 

Suppose # is a genuine irreducible automorphic cuspidal representation of 

r Our purpose in this section is to show that ~" is essentially induced from an 

irreducible cuspidal representation of SA contained in the restriction of # to SA. 

More precisely, we shall deal with the intermediate subgroup 

GI  = {(g, ~): det g E (A x)2}. 

We show that induction gives rise to a one-one correspondence 

,7 ---, ~ .  

between the genuine automorphic representations of GA and G* ; this bijection 

is already implicit in [1], where the characters of genuine # on G were shown to 
be supported on G*. 

(1.1) Local Theory 

Let F denote a non-archimedian local field of odd residual characteristic, and 
a genuine irreducible admissible representation of S. If g ~ G, the equivalence 

class of the conjugate representation 

(1.1.1) ~8(~) = ~((g, 1)g(g, 1)t), g E ,~, 

depends only on det (g). This is because G is the semi-direct product of S with 
the group 
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(think of a as det (g); cf. [4]). The center of S is the four-element (Klein 4-group) 

{(-+-/, ~):~: = -1}.  the intersection of S with 

{([o ~ / = ; : a E F X , ~ : = - + l  . 
of 

Recall the group (~* = {(g,~:): g E G, det g E (F~)2}. Its center is Z. 

Let /z  be any genuine character of 2 whose restriction to S Cl 2, agrees with 
the central character of 5.. Since (~* = S x Z, the formula 

(1.1.2) 6- x ~ ( ~ )  = 5 . (n~  (~) 

determines a well-defined irreducible admissible representation of 1~* whose 
restriction to S (resp. 2 )  is 6" (resp. /~). 

Note that the central character of 5" x p, is /x, since ,~ is the center of (~*. 

However, the central character of the conjugate representation (5. x/z)s is/x o, 

where a = det g and 

(1.1.3, t x . (~? ,= / z ( [  ; ~ ] f [ ; - 1  0 ] )= (a , z , / x (~?  ) f o r ~ ? = ( [ ;  z0 ] , , ) .  

(Here (a, z) denotes the Hilbert symbol of the scalars a and z in FX.) Thus 

(6-x/.L) ~ is equivalent to 5 .x /z  if and only if d e t g E ( F X )  2, and so from 
Mackey's theory we obtain: 

PROPOSITION 1.1.4. The induced representation 

7? = Ind (5. x tz, (~ *, (~) 

is irreducible, and its restriction to G*  is the direct sum of the representations 

(5. x tz ) t~ '21, as a runs through representatives of (F x): \ F x in F ~. 

REMARK. The analogue of this proposition for Gl_a and G* (in place of 1~ 
and G*) is false; in particular, if o- is a generic principal series representation of 
SL2, (o" x /z )  s is always equivalent to o x/z. 

Returning to the metaplectic group, let us suppose conversely that "ri" is an 

irreducible admissible genuine representation of (~ in some space V~ and the 

central character of 7? is o)~ i.e., oJ,~ is a genuine character of Z, 2, and 

(1.1.5) ,B'(f) = to~(~,)I V~. E 2 2. 

Let II ,  denote the (finite) set of characters of 2 whose restriction to Z,~ is to.~. 
Then the natural action of 2 on V,~ decomposes V, into the direct sum of 
eigenspaces 
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(1.1.6) V" ={v E V~ : z?(;~)v = tL(f)v V~ E Z } ,  

one for each /z in ft, .  

Since 8 "  commutes with Z, each V" is invariant for the action of 8 "  through 

r The resulting G*-module V" obviously has central character t~, so V" is 

equivalent to V r if and only if/z =/z ' .  Moreover, the identity (1.1.3) implies 

~ ( 0  ~ ) V ~ - - V  ~~ 

Thus 

(1.1.7) 1 8 " - - � 9  w ~ 
a 

the sum extending over all representatives a in F x for the coset space F x ](F ~)2. 

Indeed, the map p. --*/.top. ~, with/~0 fixed in fl,~, defines a bijection from fI ,  

to the set of characters of FX/(FX) 2. So since the Hilbert symbol (., .) identifies 

F~/(FX) 2 as its own Pontryagin dual, it follows from (1.1.3) that the set 

acts transitively on the collection of V"'s. 

REMARK. Let 7r" denote the representation of G* realized in the eigenspace 

V". If g E G, and d e t ( g ) =  a, then the conjugate representation 0 r " y  acts in 

V "~ and is equivalent to ~r "~ In particular, (1.1.7) may be rewritten in the form 

(1.1.7)* v ,  ';1. 
a 

Frequently, we shall not distinguish between a representation and the space in 
which it acts. Thus, from (1.1.7)* we obtain: 

PROPOSITION 1.1.8. For any iz in fL,  the G*-module V" is irreducibte, and 

= Ind (V ~, 8 * ,  8 ) .  

PROOF. (1.1.7) implies ~ is induced from any V ~, and since 73 was assumed 

irreducible, V ~ must be also. Note that the transitive action of G / G *  on the 

V ~'s implies that the restrictions of two representations ~, and ~2 to 8 "  either 

coincide or are completely disjoint. 

CONCLUDING REMARK. Suppose ~ is an unramified representation of (~, and 

yo is a vector in V, fixed by GL2(OF). Then in the decomposition (1.1.7) no 
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eigenspace V ~ contains yo, i.e., no V ~ contains a G~(O~)-invariant vector. 

Indeed, suppose one did, say V~. For any a in F x, the vector 6" (~ o) yo belongs to 

V "~ so for a any non-square unit, we would have another GL2(OF)-invariant 

vector, namely 6"([~ ~ in V "~, a contradiction since V ~o and V ~ are 

disjoint, and the space of Gl_a(OF)-invariant vectors in V, is one dimensional. 

(1.2) Global Theory 

Once again F is an A-field and 6" = (~) 6"~ is an irreducible unitary genuine 

representation of t~A in some space V,,. As in the local theory, we shall show that 

(6", V,) is induced from an irreducible representation 6"" of (~*, with /x a 

character of ZA whose restriction to 2~ is to,. The new twist, however, is that 6"~ 

will no longer be a subrepresentation of 6" and the number of possible ~-" is not 

countable. 

Let ~,~ denote the set of characters of 2 ,  extending to~ on ,~.~, and fix 

=(~)tzo in 1),~. For any place v of [, let 6"~ denote the irreducible 

representation of tS* acting in the eigenspace V ~o ; cf. (1.1.6) and (1.1.7). Let S 

denote the finite set of places of F such that 

(i) v is finite and "odd"  outside S; 

(ii) 6"~ and p.o are unramified outside S. 

For each v outside S, 6"~ has a vector invariant with respect to G~(O~)  but in 

the sense of the Concluding Remark of w ff~ does not. Set 

K* = {g E GL2(Oo) : det g �9 (F{)2}. 

Then for each v ~  S, the space V "o will contain a vector invariant for K*~, and 

the (restricted) tensor product 

6"" = (~) 6"~ 
v 

can be defined. 

1he representation 6"~ determines an irreducible representation of (~* since 

each local component 6"~ is an irreducible representation of t~*. However, 6"~ is 

not a subrepresentation of 6" (regarded as a t~*-module) since no vector in the 

space of 6"~ is fixed by GL2(Oo) for almost every v (whereas every vector in V, 

is so fixed). 

PROPOSmON 1.2.1. For each character p. in f ~  the representation 

Ind (6. ~, (~*, t3A) is equivalent to 6". 
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PROOF. Follows from the local results. 

When "i? happens to be automorphic cuspidai, we can refine Proposition 1.2.1 

as follows. Suppose -5- is realizable in some subspace of V,~ of square-integrable 

cusp forms on (3,,. Let V,~. denote the space of restrictions of functions in V,~ 
from (~, to (~ ~, and 7i-, the resulting representation of (~ ~ in V,~. given by right 
translation. 

Consider the compact group 

C = Z,/Z~Z~. 

Since Z,, commutes with the action of (3", and each f in V,~. is Zr  invariant, the 

compact group C acts naturally in the space V,~.. The result is a decomposition 

(1.2.2) V,~. = ( ~  V,~.~ 

corresponding to the (countable) set of characters IX of zZA/Z~ whose restriction 
to ,~2 is ~o,~, i.e., the "automorphic" Ix in fI,~. Each subspace V,.~ is invariant 

under the action of (~*, and an eigenspace for the action of ZA. 

PROPOSnION 1.2.3. Let ~r ~ denote the natural representation of G* in V,~., Ix as 

above. Then ~r ~ is an irreducible automorphic cuspidal representation of G*, and 

the induced representation Ind(-#~, (3", (3A) is equivalent to ~r. Moreover, the 

decomposition (1.2.2) may be rewritten in the form 

(1.2.4) V, .  = ~]~ (V~o) ~ 
a 

with Ix,, a fixed automorphic character in fl,, and the sum extending over all a in 
F x" 

PROOF. Most of this follows from the local theory. What requires proof is the 

decomposition (1.2.4). It amounts to the assertion that all "automorphic" Ix in 
f t ,  are of the form Ixc~ for some a in F ~. Indeed 

__ = v .  

where (V~") ~ denotes the Gl -module  V,~.~ conjugated by the element [; ~]. 

Identify ZA/Z~ with A~/(A~) 2. If Ixo in ll,~ is trivial on ZF, the map Ix ---* IXoix -~ 

establishes a bijection between the "automorphic" Ix in 1~,~ and the characters of 
M/(A~)2F ~. But the Pontryagin dual of A~/(A~)2F" is exactly F~/(F") 2, the 

pairing being provided by the global Hilbert symbol. So if Ix is a genuine 
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character of 2`,`/Z~ whose restriction to 2`~ is o9,~, there exists some a in F x such 

that 
~ (~)  = ~ , (~)  = (a, z)~, ,( /)  

for all ~? = ([~ o], ~r 2,,`. 

LEMMA 1.2.5. (cf. pp. 768-771 of [9]). Suppose ~r. is any irreducible genuine 
representation of G* realizable in the space V~. of automorphic cusp forms on G *~. 
Let I7" = Ind (Vs., G*, GA). Then ~r is an irreducible automorphic representation of 
GA. 

PROOF. By the local theory, -g" is irreducible. To see that it is automorphic, let 

l : V,~.~ C be the non-zero linear functional obtained by evaluating f in V,~. at 

the identity. Since V,. is a space of automorphic forms, the functional l is 

invariant for all ",/in G*.  To show that ~ is automorphic cuspidal, we construct 

an embedding of V,~ into the space of cusp forms on G,,. 

By definition, we may take "ri" to operate by right translation in the space of 

functions F :  G,`---~ Vs. which are compactly supported modulo G~* and such 

that F(g~,)= "ri'.(g)F(~) for all g in G*,  ~ in (~A. Define a functional L on the 

space of "rT" by 

This sum converges because F has compact support modulo (~*, and the 

functional it defines is clearly invariant for all 3/ in GF. Thus the fact that 7i- is 

automorphic cuspidal follows from the fact that 7i', is automorphic cuspidal, the 

embedding of V,~ into the space of r forms on ffrA being given by the map 

F--* 4~(g) = L (7i-(g)f). 

Summing up, we have: 

PROPOSITION 1.2.6. (i) Each automorphic cuspidal representation ~ of G, is 
induced from an automorphic cuspidal representation (r. of G*, and all such 
representations of G I thus arise. 

(ii) The "automorphic restriction" of ~ = Ind(z?.,  (~*, GA) to (G*, V,.) 
(automorphic cusp forms on CJI) contains precisely the representation "r3"..~, ','t, a 
running through F x. 

(1.3) Some Remarks about SA 

Recall that G* = Sj, x Z,`, with S,` A 2,, equal to the center of SA. Thus every 

(genuine) irreducible unitary representation ri'. of G* has the form 
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~ ,  =6.  x /z  

where 6. is a genuine irreducible unitary representation of SA, /Z is a genuine 

character of ZA which agrees with 6. on SAN ZA, and 6. • is defined by the 

formula 
6. x ~ ( ~ z )  = 6.(s)~(~). 

Note 6" x / x  is automorphic iff both 6. and /x are. 

PROPOSITION 1.3.1. Suppose (r is an irreducible genuine cuspidal representation 

of GA and Iz is a character of ZA/Zv whose restriction to Z]  is to,. Then the 

representation (r ~ introduced in Proposition 1.2.3 is of the form 6. x ix, for some 

irreducible cuspidal representation 6. of SA, and the map 

,r? ~ Res,, (~-) = 6. 

is well-defined. 

Now suppose 6. is any genuine automorphic cuspidal representation of SA. 

Extending 6. up to t~* by the formula above, and inducing up to t3A, it follows 

from w that the multiplicity of 6. in the space of cusp forms on SA cannot 

exceed the multiplicity of the corresponding cuspidal representation of t3A in its 

space of cusp forms. But Flicker has shown that this latter multiplicity is one (p. 

180 of [1]). Thus we have: 

PROPOSITION 1.3.2. Suppose 6" is a genuine automorphic cuspidal representation 

Of SA, and m(6. ) denotes its multiplicity in the space of cusp forms on SA. Then 

m ( 6 . ) = 0  or 1. 

REMARK. An ingenious and involved proof of this multiplicity one result - -  

completely independent of Flicker's result for (3A - -  was the subject matter of 

[161. 

PROPOSITION 1.3.3. Suppose 6" is an automorphic cuspidal genuine representa- 

tion of SA. For each g in GA, let 6.~ denote the conjugate representation 

6.~(g) = 6.(~-~),  and m(6. ~) its multiplicity in the space of cusp forms on SA. 
Then 

m (6.g) = 1 (as opposed to O) 

for all g in GFZASA. 

PROOF. Suppose first that g = zTg in ZASA. Then &g is equivalent to 6. (with 

intertwining operator 6.(g)) and m(6. a) = m(6")= 1. 
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Now suppose g is in Gv. Pick/~ automorphic on "?,A and compatible with dr on 
the center ZA t3 SA. Because 

( a  x = (dr x with a = det g in F ~, 

Proposition 1.2.6 implies (dr x p.)g (as well as ~ x/z) is automorphic cuspidal. 

But if (dr x/a.) g is realizable in the space of cusp forms {f (~), g E GA*}, the space 

of restrictions of these functions to SA then realizes drs as an automorphic 

cuspidal representation of SA. Hence re(dr g) = 1. 

REMARK. We suspect that this result is best possible, i.e., 

m(a ) = 0 

as soon as ~ lies outside GrZASA. 

(1.4) Strong Multiplicity One for SA 

The derivation of a strong multiplicity one result for SA using Flicker's 

analogous result for (~A is only slightly less trivial than the multiplicity one result 
just described. 

THEOREM 1.4. (cf. [18], theorem 3, p. 67). Suppose dr and dr' are automorphic 
cuspidal representations of SA which have the same central character and agree 
almost everywhere, i.e., for all v outside of a finite set of places S, dr~ -~ dr'o. Then dr 
and ~' agree (i.e., are equivalent) everywhere. 

PROOF. Choose a character/z of 2A/Zr compatible with the central charac- 

ter of dr (and hence dr', by assumption). The representations dr x/z and dr' x/z of 

G* are automorphic cuspidal, they agree locally for all v ~ S ,  and their 
restrictions to Z^ agree everywhere. Consider the representations 

6- -- Ind (# x/z, (~*, (~A) and "IT-' = Ind (07' x ./x, (~*, (~A) 

of t~A. They are automorphic cuspidal, they agree almost everywhere, and their 
central characters (their restrictions to 2 ] )  agree everywhere. Hence by Flicker's 

strong multiplicity one theorem for t~A ([1], corollary 5.3, p. 180), I? ~ 77'. In 

particular, by multiplicity one, ~- and # '  both act in one and the same subspace 

of cusp forms, call it V,~ and the space consisting of the restriction of functions in 
V,~ to GA* contains both dr' x/z as well as dr x/z. By Proposition 1.2.6 (ii) this 
means 

dr'x~ ~(dr x~ )  o =6-" x~"  
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for some a in F x. (By abuse of notation we write 6a for #[~ o].) But 

6 '  x p. ~ #~ • ~ implies /z ~ =/z, an impossibility unless a is a square in F ~. 
Thus [~ o] E SAZA, and 

as was to be shown. 

REMARK 1.4.1. Both the proof and the statement of Theorem 1.4 fail with SA 

in place of SA. Indeed, as already remarked after Proposition I.I.4, cuspidal 

representations of G* don't induce irreducibly to GA, and as shown in [9], strong 

multiplicity one for SL2(A) fails. Here is a simple counterexample. 

If F = Q, let ~r denote an irreducible cuspidal representation of SL2(A) whose 

infinite component 7r~ is a discrete series representation of lowest weight k. For 
the matrix e = [-o ~ o] in GL:(F),  the conjugate representation 7r E is again 

automorphic cuspidal. Suppose ~rp is an irreducible principal series representa- 

tion of S~(Qp) for each p outside some finite set S. Then 7r~,~ 7rp for all p ~  S; 

moreover, the central characters of 7rp and 7r~ agree for allp. Nevertheless, 7rs is 

a discrete series representation of highest weight - k .  In particular, ~r ~ is not 

equivalent to ~r, contradicting strong multiplicity one. 

CONCLUDING REMARK. "Strong Multiplicity One"  fails for SA as well if we 

drop our assumption on the central characters. This fact is central (pun intended) 
to our discussion of "near-equivalence" of cuspidal representations of SA in w 

and was first noticed by Waldspurger (who in [18] produced the interesting and 

non-trivial counterexamples discussed in w 

w The relation between the correspondences of Shimura and Shintani- 
Waldspurger 

(2.0) 

Our goal in this section is to discuss the commutative diagram 
sc  7r( 

"n', )~- 

Here ~ (resp. # )  is an irreducible genuine representation of GA (resp. SA), and 

~ ,  (resp. ,r) iS an irreducible representation of  PGL2(A) (resp. GA); SC denotes 

the (generalized) Shimura correspondence constructed in [3] or [1], Res~ 
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denotes the /J,-restriction operator described in Proposition 1.3.1, and O(0)  

denotes the Shintani-Waldspurger correspondence mapping genuine represen- 

tations of S possessing a 0-Whittaker model to irreducible representations of 

PGL2; to = to, = I~X,-, is a character of A ~ whose precise definition will appear 
below (cf. (2.3.2)). 

Not surprisingly, most of our discussion is purely local. First we shall show that 

the Shimura-type zetafunctions of [3], suitably modified with S in place of (~, 

lead to precisely the correspondence of Waldspurger. In other words, the 

Shimura correspondence constructed in [3] and the Waldspurger correspon- 

dence described in [16] amount to the same construction. From this we are able 

to give a direct (and local) derivation of all the e-factor assertions of w of [3] as 

well as the commutativity of our "Key Diagram" (2.0). 

Finally, in w we discuss global applications of our Key Diagram to the 

non-vanishing of Hecke's L-functions L(~r @X~, s) at s = 1/2, results originally 
proved by Waldspurger in [17]. 

(2. i) Local Shimura-type Integrals on 

Throughout this section, F is a local field, and 6. is an irreducible admissible 

genuine representation of S = SL2(F). Suppose 0 is a non-trivial additive 

character of F such that the 0-Whittaker model ~r exists. By 0 ~ we 

denote the character 0~(x) = 0(sex), ,f in F ' .  Following [3] and [16--18], we let r, 
denote the "basic Well representation" of S acting in the Schwartz-Bruhat 
space .~(F). By I,~',(/1) we denote the complex conjugate of any non-zero 

function in the 0-Whittaker model of (the even or odd irreducible piece of) r,. 

Using the methods of [3], we shall attach to 6- certain L and e factors which 

turn out to be exactly the L and e factors associated (~i I/~ Jacquet-Langlands) to 
the image n-, of 6- under O(0). 

Let W(/~) denote any non-zero function in 3r For each @ in the 

Schwartz-Bruhat space 6e(F x F), each s in C, each quasicharacter a of F ' ,  and 

/~ = (h, 1)in S, put 

"[| s, a ) = fF, 

and 

@((0, a )h )l a ]'*ma(a )d'a 

�9 (s, W, W,, ~) = f~ *f| s, a ) W, (h) W(f~)dh. 
\SI~(F] 

We note that: 
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(1) These integrals converge for Re (s) sufficiently large. 
(2) The integrand defining ~(s, W, W,, qb) depends only on N \SL2(F), since 

W and if', transform contravariantly under n x {___ 1}, and N fixes (0, a). 
(3) The central characters of the even and odd pieces of r+ differ by sign. 

Hence, having fixed ~ and a, only one choice of component will produce a 

non-vanishing integral for ~(s, W, W,, qb). This is the choice we make. 
For any function F in the P G ~  Whittaker model ~r and Re(s) 

sufficiently large, let JL(F, s, a )  denote the Jacquet-Langlands zeta-integral 

JL(F,s,a)= f~, F(O ~)la I s '/2c~(a)dXa; 

cf. [8], p. 75. The proposition below provides the sought-after relation between 

the L and e construction of Shimura-type and those of Jacquet-Langlands. 

PROPOSITION 2.1. For F appropriately related to W, W,, and el), 

JL (F, s, a )  = ~(s, W, W,, ~). 

To prove this proposition we shall exploit a convenient formula for F(g) in 
~162 6). But first we shall review Waldspurger's correspondence using the dual 

reductive pair language of [7]. 
Let V denote the space of 2 x 2 trace zero matrices over F equipped with the 

quadratic form q(x)=  -de t (x ) .  If GL2(F) acts on V by (g)(x)=gxg -~ it is 

well-known that this action identifies PGL2 with SO (V), the special orthogonal 

group of V. 
Let W1 denote the two-dimensional vector over F and (., �9 ) the standard skew 

symmetric bilinear form on WI. Then the isometry group Sp (W,) is just SL2(F). 
To bring into play Howe's theory of dual reductive pairs, form the six- 

dimensional space W = V~)W~, equipped with the skew symmetric form 
obtained by tensoring the above forms on V and W~. The groups PGL2 and SL2 

embed naturally in the isometry group Sp(W), and the oscillator (or Weil) 
representation of Sp(W) produces a (genuine) representation to,(g,h) of 
PGL2 x S. 

To continue, we need an explicit realization of to, (g, h). In particular, we need 

to fix a particular "Schr6dinger model" for to, (g, h). For this, we choose a basis 

{xl, l, x2} for V with 
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and a basis {w,, w2} for W, with w, = (1,0) and w2 = (0, 1). (The matrix of the 

form q(X) with respect to the basis {x,, l, x2} is 

[! 0 1] 
1 0 ' 

0 0 

and the matrix of the form ( . )  on W, is [o -~].) Define two subspaces of 

W = V @ W1 by 

Z,={x , }@W, f~{ l@w~}  and Z~={x2}@W~f~){l@w2}. 

These subspaces are isotropic for the skew symmetric form on W, and their 

direct sum is W. In other words, these subspaces comprise a "complete 

polarization" for W and hence provide a realization of to,(g,/~) in 6e(Zl); cf. [7]. 
For convenience, we write an arbitrary point Z~ as z = (w, t), with w in W~ 

and t i n F s u c h t h a t  z = x ~ @ w + t ( I Q w O. 

LEMMA 2.1.1. Suppose & qJ and W(h) are as above, i.e., ~ qJ) exists and 
W(h) is non-zero in 1r ql). Suppose rk is in 6e(Z O, and put 

F(g) = fN,si~) to,(g, tl )6(zl) W(tl )dh, 

where zl = (w2, - 1) in Z,, and g E PGLdF) .  Then F(g ) defines a O-Whittaker 
function for the irreducible representation zr, of PGLffF). (Here It, = | the 
image of ~ under the Shintani-Waldspurger correspondence @(~b).) 

PROOF. According to w of [18], the space of right translates of F(g) realizes 

an irreducible representation of PGI.a(F), namely | Indeed, once Z, is 
properly identified with the space F 3, our operators ro,(g, h)  on Y(Z~) coincide 
with the operators f, (tr)/~ (g) on ~ ( F  3) which Waldspurger defines on page 22 of 
his manuscript. In particular, 

to,(  [10 1] g, h-) ck(z,l = d/(-  x )to,(g, hlck(z,), 

and therefore F[[~ ~ ]g] = ~(x)F(g) ,  i.e., F(g) is indeed a W-Whittaker function. 

To prove Proposition 2.1 we shall combine Lemma 2.1.2 with the following 

observation about how to,(g,/~) factors over the subgroup {[3 0]} x 
The matrices [~ o] and w = [o  ~] in P G ~ ( F )  stabilize the vector l (at least up 

to sign). Hence these matrices act as O(1) in the one-dimensional subspace {l} of 

V. Simultaneously, these matrices act as 0 (2)  in the two-dimensional com- 
plementary subspace of V spanned by x~ and x2, taking x~ to axl and x2 to a-'x2. 
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Let to~ (resp. to~) denote the Weil representation of O1 x S (resp. 02 x S) 
associated to the polarized symplectic space { IQw~}G{IQw2}  (resp. 
{x~} ~) W~ ~) {x2} Q W~). The restriction of to, (g,/~) to the subgroup generated by 
the matrices [g o] and [o ~] (together with S) is the product of the Weil 
representations to ~ and to ~ acting in b~({x~} Q W~) and Se({/} Q w~) respectively. 

We can (and do) assume that th in b~(Z~) is of the form 

ck(w, t ) = ck2(w )qbl(t ) 

since such functions span a dense subspace of 6e(Z~). Thus 

to*([0 ~] ' /~)~ 'b(w' t '=to~([0 01]/~)~2(w'to*([0 01]'/~)~'(t)" 

This factorization of to,(g, h) vindicates our particular choice of polarization 
(Zl, Z,) for W. 

How do these representations to~ and to~ act in their respective function 
spaces? Since [~ o] acts trivially on l, to~([~ 0],/~)~b~(t) = r,(h)qb~(t), with r, the 
basic Weil representation in ~(F). In particular, the function r, (/~)~b~( - 1) is the 
complex conjugate of a function W,(h) in the Whittaker space for (the even or 
odd part of) r,. 

On the other hand, the polarization {x~}@ W~ for (02, S) "linearizes" the 
action of /~ in to~(g,/~), so we have 

In particular, 

f~. to~([0 ~] 'h )  ~2(w2)'a[5-'/Za(a)dXa = f d~2(O'a)h)[a[~§ 

= *f*2(h, s, a ). 
Thus, with r = 4~2 and F, IV, and W as above, Lemma 2.1.1 implies 

JL(F, s, a ) 

-- la ['-"2a(a) 

to:([o 
*f*(h ,s ,a)W,(h)W(h)dh =~(s,  W, W,,~) ,  

JN \SL2(F) 

as was to be shown. 
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Proposition 2.1 is now proved; we note that similar arguments show that (with 
w = [_': ~]) 

,,__L ~ 

*f*(h, 1 - s, a ' )W(h)W,  (ft )dh 
\SLy(F) 

= 4 , (1  - s, w ,  w , , r  

with 

+(x, y) = f~..• qb(u, v)O(xv - yu)dudv 

and F, W, W, and @ as above. But according to the local functional equation of 

Jacquet-Langlands (cf. [8], p. 75), 

(2.1.2) 
JL (wF, 1 - s , a  -~) JL(F,s ,a)  

L(1 - s ,  ~',a -t) = e ('n', @a,s,  $)L(s ,  ~r, @ a )  

for any Whittaker function F(g) in 3r $), and any quasicharacter a of F'. 

(Here L(s, Tr,@ct) and e(~r ,@a,s ,~)  are the familiar functions of 

Jacquet-Langlands.) Thus, by Proposition 2.1 and the above remarks, we also 
have 

- = ,I,(s,  w ,  w , ,  r q'(1 s,W,W~,,~) ~(s,~,| 
L(I s,~r,@a- ) L(s, Tr,@a) 

for all W, W, and ~. This equation is the S-analogue of the local "Shimura- 

type" functional equation for GL2(F) developed in [3]. It implies that the L and 

e factors attached to Shimura-type integrals for ~ are just L(s, 7r, @ a )  and 

e(s, zr,@a,~b). Globally, similar reasoning relates JL(F,s ,a)  to the (con- 

vergent) integral of the product of a cusp form for ~, a theta-series, and an 

Eisenstein series. This makes it possible to prove (by now familiar reasoning) 

that L (s, zr, @ a ) is entire and satisfies the kind of functional equation necessary 

to show that 7r, is indeed an automorphic cuspidal representation of PGI_a(A) (at 

least when t~ is not itself a "basic theta-series" r, ; cf. the first paragraph of w 

Summing Up. The natural S-adaptation of the Shimura-type L-function 
constructions of [3] yields precisely the correspondence O(~b) of Waldspurger. 
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2.2. The e-factors of [3] Revisited 

First we recall how these factors are defined. If 7i- is any genuine irreducible 

admissible representation of G (F is still local), we pick/z to be any genuine 

character of ,Z which extends the central character of # and is such that the 
(~b, /z )-Whittaker model 3V(,~-, ~b,/z) of [6] exists. If X is any character of F ~, we 

let r x denote the irreducible basic Weil representation of GL~(F) described in 
[4]. This is a "distinguished" representation; given ~b, ~V(rx, ~,/z) ~ {0} if and 

only i f /z (a )  = x(a)x,(a) .  Here X, is a certain projective character of F ~ whose 
restriction to (F~) 2 is trivial and whose precise definition appears in equation 

(1.2.2) of [4] or p. 4 of [16]. For each non-zero W(~) in 3V(7i-, ~b,p,), W~(~) in 

3V(rx,~-',X,-.X) and ~ in ~ ( F •  F), we define the zeta-integrals 

�9 (s, W, W~, qb) = fN W(g)W~(g)f*(g,s, to,)dg 
Z \ ( ; I . 2 ( F )  

and 

~,(s, w, w~, , )  = fN~, W (g ) W~ (g )a ~(det g )f*(g, s, to ,')dg, 
r 

with 

and 

f| s, to,) = I det g I" fv, @((0 a )g)l a 12"to ,(a )da, 

w, = Xl~X, ,. 

These functions extend meromorphically to all of C, with g.c.d.'s L (s, 6-, X) and 

l~(s, 6",X) respectively. Moreover (cf. theorem 5.3 of [3]), they satisfy the 
functional equation 

(2.2.1) ,v(1 - s, w,  w, ,  ~) -_ e (s, ~., x, r w,  w~,, a,) 
/S(1 - s, ~ , x )  L(s,~r,x) 

To compute these L-factors we analysed the asymptotic behaviour of the 

Whittaker functions W(~ ~l) and W~6~ o). Since the asymptotic behavior of these 

functions is independent of the choice of /z (as well as $), so are the factors 

L(s,~r,x) and /~(s,~',X-'); these results are described in w of [3]. 

Our purpose here is to explain an efficient method of computation for the 

e-factors e(s, "?r,x, ~). The fact that the functional equation (2.2.1) holds for all 

choices of W, W~ and �9 means that the e-factor can be computed using a special 
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(judicious) choice of these functions. In the present context this amounts to the 

following. 

Regarding ~ G,/x) as in {~-module, we know from w that 

~EN~ 

with 0/r the subspace of W(g) in ~ G,/z) such that W(g~.) = tz(~.)W(g) for 

all 3 in Z. Recall that each ~r realizes an irreducible representation 6.'` of {5" 

with central character/x. Now choose W(g) in o/~-'`. Then 

W(~) = W(g3) = (det g, z) W(~g) 

= (det g, z)W(g), 

i.e., W(~) vanishes off the set (~* (where (det g, z)-= 1). 

With this choice of W(g), 

W(s, W, W~,{I}) = YNz~c. W(g)W~(g)f*(g's'~ 

= ~ W(h)W,-,(h)*f*(h, 2s - 1/2, a)dg 
. IN  \ SI~ 

where W(h) is a function in the G-Whittaker model of the irreducible 

representation {~ of S obtained by restricting 6"" to S, W, is a function in the 

G-'-Whittaker space of an irreducible piece of r,-, (even or odd depending on 

whether X ( -  1) = 1 or - 1), and a = {o. = I.~X, 'X. 
Now assume W~(g) chosen so that W, ,(/~) is of the form r,-,(h){b~(1), with {b, 

in 5e(F). Thus, since 

r~ ~(]1)61(t)= r , ( / ~ ) 6 , ( t )  

we conclude that W, ,(/~) is then the complex conjugate of a G-Whittaker 

function for (the even or odd part of) r,. In other words, if s'= 2s -1/2, then 

W(s, W, W,, {I)) coincides with the integral W(s', W, W,-,, {I)) just described for 

SL2(F). A similar identity holds for q r (1 -  s, W, W,, ~) .  

What does this imply about the factor e(s,~r,x,G)? If 6. is a supercuspidal 

representation of (~ (and not of the form r. for any v on F x) then L(s, 6.,X) = 1. 
Thus 

�9 (1 - s, w ,  w , - , ,  $) 
6.'x' G) = 
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with the integrals on the right those defined on SL2(F), and W in ~ "  so chosen 

that W(s, W, Wx,~)#  0. In other words, by Proposition 2.1 and (2.1.2), 

e(s, ~',x, 4') = e(s, ~r, | 4'). 

On the one hand, this identity gives us the desired computation of e (s, ri', X, @). 

At the same time, it shows that e (s, ~, X, 4') is independent of the choice of/x in 
D,. 

Indeed, suppose / z * / / z  is another such genuine character of 2. Then for 

some ~: in F ' ,  p.'*(z) = Xe(z)lz(z) with )t'e the quadratic character X~(x) = (s% x); 

i.e., choosing W*(g) in ~ in place of W(g) in o/r leads to the character 

a*(x)  = a(x)xe(x) in place of a. 

On the other hand, the representation of #"" is conjugate to 7r" via the 

element [o e o], and the restriction of W*(~) to S is conjugate to W(/~), i.e., 

w*(fz) = w(f i  [,; o]). 

So from Lemma 2.1.1 together with the fact that 

to~ (g, h [o' o] ) = to~, (g, h),  

it follows that the resulting Whittaker function F*(g) on PGL_, belongs to the 

representation rr,~ instead of 7r,. But 7r,, = 7r, @ Xo Thus this different choice of 

/z, namely /x*, leads to the factor 

e(s, ~',x, 6, u*)  = e(s',  ~r,, |  4') 

= ~(s', ~-, |  |  |  6) 
= ~(s', ~', |  4') = E(s, #,X, 4',~) 

as was to be shown. 

A similar argument works when ~ is not supercuspidal (or of the form rv with 

v( - 1) = - 1). In this case, L(s, (r, X) and/2(x, 7i', X) are no longer always 1, but 

the L-function computations of w of [3] show that 

L(s,'7r, x )=  L(s', Tr, |  ) and f~(s, ~r,x)= L(s', Tr, |  

Here 7r, is the representation of PGL2(F) which Waldspurger's 4'- 

correspondence attaches to the restriction of the "/z-component" of "r? to S, and 

a = to. = tzXX, '. Thus, choosing W(g) as above, the functional equation reads 

r ^ ! �9 ( 1 - s ,  w, w , . . ) L ( s  ,,.,-, |  
e ( s , ~ , x , 4 ' ) =  ~(s',  w, W , , , ) L ( s ' , ~ , |  

= E(s' ,  ~-, | ~, 4'), 
as was to be shown. 
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Summing Up. The e-factor e(s,~r,x,$,tz) is indeed independent of the 

choice o f / z  (cf. w of [3]). Moreover, consider the diagram 

(2.2.2) 

sc r r (  

?1 1 Res"(~') 

(with /x such that ~r $,/~) exists). Then for any quasicharacter g of F x, 

E(s, Cr, x, ~ )= ~(s', rr. |  e/), 

with a = IxX,-,X, and s' = 2s - 1/2. From this, the e-factor assertions of sections 

6 and 7 of [3] follow. 

(2.3) Shimura's Correspondence and the Key Diagram 

F is still local. 

In w of [3] we defined an irreducible admissible representation r of G to be 

the Shimura image of ~r on G if 

 o(o o0 
and, for any quasicharacter X of F ' ,  

L(s, ~r,x)= L(s', Tr | X ), 

s e ,x )  = L(s', .~ @x- ' )  

and 
e(s ,  ~ , x ,  ~') = e ( s ' ,  ~ | ~'). 

Since the (twisted) L and e factors w uniquely determine rr (subject to (2.3.1)), 

such a Shimura image - -  denoted by SC(-~-) - -  is unique. What we have just 

shown is that this Shimura correspondence is such that for all quasicharacters X 

of F x, 

L(s', 7r | X)= L(zr, ~ a ,  s') = L(s, #,X), 

and 

e(s' ,  ~- |  ~,) = e(s, ~-, | ~ ,s ' ) - -  e(s, er, x,r 

with a = P.X, 'X. Thus 
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and hence 

| �9 7'/" = "B'~ O~.,1( l ,  

i.e., our diagram (2.2.2) commutes, with the operation ? defined by tensoring by 

w-' ,  and to defined by the equation 

(2.3.2) to ~ aX 1 = ftX* '. 

w Global applications of the Key Diagram 

If 17 = @ 77~ is an irreducible admissible genuine representation of (~A with 

central character w~, and 7r = (~) 7r~ is an irreducible admissible representation 

of GA, we say 7r is the Shimura image of 7?, and write 7r = SC(77), if each 

m = SC(77o). In [3] we proved that every genuine cuspidal representation 7? has 

a Shimura image, and this image is itself automorphic cuspidal (provided 77 is not 

distinguished in the sense of [4], i.e., a basic Weil representation of the form r~). 

Moreover, Flicker subsequently proved in [1] that 7r = (~) 7r~ is in the image of 

SC if and only if it satisfies the following two conditions. 

(F1) The central character of each 7to, regarded as a character of F~, is the 

square of a character of F~ ; equivalently, to~o ( - 1) = 1; 

(F2) Whenever 7r~ is equivalent to a principal series representation ~ro (ftl, ft2), 

both ft, and ft2 are "even",  i.e., squares of characters. 

Using Fiicker's theorem, we can now give a simple proof of one of 

Waldspurger's most beautiful results (see the end of [17]). 

THEOREM 3.1. Suppose 7r = ( ~  ~r~ is an automorphic cuspidal representation of 

PGLz(A) such that at least one 1to belongs to the discrete series. (For example, this 

condition holds whenever F = Q and r corresponds to a classical modular cusp 

form of weight k.) Then there exists a ~ in F ~ such that L ( ~  @Xe, zi)#0. 

PROOF. The first step is to produce a grossencharacter X such that zr @X, 
regarded as a representation of GI.a(A), satisfies Flicker's conditions (F1) and 

(F2). 

Let S be the set of places v of F such that ~-o is a principal series 

representation m,(v, v -1) with v odd instead of even. Whenever or, is un- 

ramified, v ~  S. Thus S is at worst finite. If S is empty, ~r already satisfies 

condition (F1) and (F2), and we can take X - 1. In general, if the cardinality of S 

is even, let X = l-Ioxo be a grossencharacter such that Xv(-  1) = - 1 for v in S, 

and X ~ ( - 1 ) =  1 for v ~  S. If the cardinality of S is odd, let X be such that 

X , ( - 1 ) =  - 1  if and only if v E S  U{Vo}. (Here Vo is any place such that ~-~ 
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belongs to the discrete series.) Then 7r @ X satisfies both of Flicker's conditions, 
and hence is in the image of Shimura's correspondence SC. (Cf. the example on 

p. 13 of [151. ) 
Let # be the automorphic cuspidal representation of (3A corresponding to 

r @X via Shimura's correspondence. If /x is a (genuine) character of 2A/Zv 
extending to,, let # be the cuspidal representation of SA obtained by restriction 

to V,~/z. Choose ~' on A/F such that gig'(#, qJ') # {0}, and let rr' be the image of 

under the correspondence O(~'). In diagram language: 

sc 

0(0') i ReSlv~.- 
7r'~ tr 

By the commutativity of our Diagram (2.0), zr '@x' = 1r @X with X' = ~,,,/z. 

This implies ~r' = r @X", with X "= X(X') -1. But the restriction of X' to (AX) z 

agrees with to,~ on (A x)2, and ton in turn coincides with X on (A~) 2. Thus X" 
defines a character of F x AX/(A x)2, which means X"= X~ for some ~ in F x. 

On the other hand, by Waldspurger's characterization of the image of (9(~b') 

([16], prop. 27 and theorem 1), L(zr,~)~0. So since 7r' = zr @X"= ~r @Xe, we 
have L(Tr @X~,�89 and the theorem is proved. 

(3.2) Our second application is to adapt Waldspurger's criterion for the 
non-vanishing of metaplectic Fourier coefficients from SA to GA. For this we 
need to review some additional notation from [4]. 

If "rT" is any genuine cuspidal representation of t~A, and ~O is a fixed non-trivial 
character of A/F, let II~ (qJ) denote the set of characters/z of ZA/ZF such that the 
restriction of tt to 2 ]  agrees with to, and such that a (~0, /.t )-Whittaker model for 

1i" exists. For each 8 E F ~, the (r space ~ ~0 ~, bt) is generated 
by the (~b ~,/z)-Fourier coefficients 

W ~ , ( , ) . =  ~2t \z. fF,A ~(~?[~ l l g) ~b-'(6x )lx-'(y" )dxd~" 

of cusp forms ~b(~) in the space V~. The Fourier expansion of ~b(g) is given in 
terms of these W**,.~(~) by the formula 

(3.2.1) ~b(~) ~'. ~ * - = w , , , , , ( g ) .  

In general, ~b is not completely determined by any "first Fourier coefficient" 

W,.~(~). If it is, we call ~b (and 17) distinguished. In this case, W**.~(~)# {0} for 
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only one choice of automorphic ta in f~,~($), say/~o, and the Fourier expansion 

(3.2.1) reduces to the simpler (more familiar) formula 

= W,.,, o g . 
~ C F  x 

In [4] we proved that the distinguished cusp forms ~b are precisely those 

generated by theta series attached to quadratic forms in one variable. In other 

words, for the remaining generic "r? now considered, it is never true that all but 

one "orbi t"  of Fourier coefficients of q5 vanish identically. Indeed, the subtle 

nature of the vanishing of an arbitrary Fourier coefficient * - W,. , (g)  is related ~t la 

Waldspurger to the non-vanishing of an appropriate L-function L(~r',s) at 

s = 1/2! 

Waldspurger's result is the following (cf. [18]). Suppose 6. = @ d-~ is a cuspidai 

automorphic representation of S,,, and to is such that that non-zero ~ 

exists. (In this case ~" = O(~)(6.) is non-zero by prop. 26 of [16].) Then for any ~: 

in F ", gr toe) is non-zero if and only if the following two conditions are 

satisfied: 

(i) L( r r '@x~,~)~0 ,  and 

(ii) ~ to,o) exists for each v. 

For the next theorem, suppose # is a (non-distinguished) cuspidal representa- 

tion of GA. For any non-trivial character to' of A/F, and any/x in 11,~ as above, let 

~162 to',/x) denote the space of (~',/x )-Fourier coefficients of cusp forms ~ in 

the space V,~ of "B-. Let X denote the grossencharacter of F defined by the 

formula )t' = ,~,/x, and put zr = SC(77). 

THEOREM 3.2. ~162 if] L ( r r ( ~ x - ' , ~ ) = 0  and for each place v 

there exists a (to'o, lzv)-Whittaker functional on the space of ~o. 

PROOF. Because multiplicity one holds for the space of cusp forms on GA ([1], 

p. 180), V,~ is " the"  subspace of cusp forms realizing ,ri', and ~162 to) depends 

only on the class of ~. 

Let us suppose first that ~ to ' , / z )~  {0}. With this hypothesis we want to 

produce a cuspidal representation 6- of S,~ such that ~ {0}, and the 

corresponding representation O(qt)(6-)is just 7r @)( -~ 

As in w consider the decomposition 

The action of ,q, in V~. defines an automorphic cuspidal representation of S,  

which we shall call 6.. 
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Let l denote the non-trivial ($', /z )-Whittaker functional defined on V~ by 
evaluation of * W,,.~, at the identity e. Regarding I as a functional on V~., we claim 

l is non-trivial on the subspace V,~.. Indeed if v belongs to V~,/~' #/x, then 

lz'(~.)l(v) = l(~'(~.)o) = I~(~.)l(o), for z E ,~.A, 

and this implies l (v )  = 0. Thus I vanishes identically on (V,~.) ~, and hence cannot 
vanish on V~.. 

On V~. we have 

f f '(e,dxae 

Thus o/r $ , )#  {0}, and the Shintani-Waldspurger $'-image of 8 exists. 

Now let 7r'= O($')(6-) and consider the diagram 

SC 7/" < 

t 
7/" ( 

~Res~ 

By the commutativity of our diagram (2.0), 7r '=Tr@X -t, with X = $ , , ~ .  

Therefore L(zr', ~)# 0 really says L(zr @X -l, �89 0, as was to be shown. The 
existence of a local 0k'o,/xo)-Whittaker model for ~o is of course an immediate 
consequence of the assumed non-vanishing of off.(~, ~b',/z). 

Conversely, suppose L(ar @X- ' , l ) #  0, and off-(~.o, $,,/z~) exists for each v. 

Let 6" still denote the irreducible cuspidal representation of SA derived from ~" 

by ",r-restriction". Because o/#.(~o, $'o,/xo) exists for each v it is clear from the 

local theory of w that ~ $'o) exists for each v. 
Now suppose ~bo is a character of F \ A such that o/r $o)# 0 and suppose 

$ ' =  ($o) *. Let rr ~ denote the O(~o) image of 6". By our key diagram, rr ~  

7r @x-mx~. Therefore, since ~ (0o.v) ~) exists for each v, and L(Tr~ = 

L(rr @2(-~,�89 the hypotheses of Waldspurger's SA result are satisfied. We 

conclude then that ~ $') # {0}, and hence - -  by reversing the argument used 

in the first part of this proof - -  that ~'(7i-, $' , /z) # {0}. 

CONCLUDING REMARK. Though the proof of Theorem 3.2 assumes multiplic- 

ity one for t3A, the theorem itself also implies it. Indeed, the condition 
L(Tr @x-m,x,)# 0 is independent of the imbedding of ~ into the space of cusp 

forms, and the (~b,/~)-models ~r ~b,/z), unique by [6], uniquely determine the 



Vol. 44, 1983 METAPLECTIC CUSP FORMS 121 

subspace. Thus it would be of interest to give a direct proof of the theorem which 
avoids the work of Waldspurger or Flicker. We believe such a proof is possible 

using Rankin-Selberg-Shimura integrals of the type investigated in [3] and w 

w Near-equivalence of metaplectic cusp forms 

Following [7], we shall call two genuine representations of SA near-equivalent 
if they are equivalent at almost all local places v. Given an automorphic cuspidal 

genuine representation 6. = (~) 6.~ of S,,, a natural problem is to describe the size 
and nature of the intersection of its near-equivalence class with the set of all 
genuine cuspidai representations of S,,. 

In the first draft of this paper (November 1981), we obtained some preliminary 
results on near-equivalence "packets" and presented some conjectures about 

their precise description. Subsequently, J. L. Waldspurger proved these conjec- 
tures (and much more) in the preprint [18]. 

Because Waldspurger himself makes reference to this portion of our original 

manuscript, and because we feel this section still contributes some useful 
insights, we include (an updated version of) it herewith. 

4.1. General Remarks 

Suppose 6. and 6.' are near-equivalent irreducible cuspidal genuine represen- 

tations of SA. Then 6. and 6.' need not be equivalent everywhere, despite our 
strong multiplicity one result (Theorem 1.4). Indeed, 6. will be equivalent to 6.' if 

and only if their central characters coincide everywhere. 

Before describing the near equivalence class of 6-, let us specify a useful 

modification of the Shintani-Waldspurger correspondence O(~0). For an arbit- 

rary non-trivial character ~O of A/F, the correspondence O(~b) is well-defined on 
6. if and only if the Whittaker model ~//'(~0, 8") exists. Moreover, on the set of 

such 6-, O(~b) is a bijection onto the set of irreducible cuspidal representations of 
7r = @Tr~ of PGL2(A) such that L(~r,~)#0, and this bijection has a local 
definition as well. 

Now drop the assumption that ~/r 6.) exist. Picking s c E F ~ such that 

~4/'(~e, 6.) does exist, Waldspurger defines a representation 7r =S,(6.)  of 

PG~(A) by the formula 

s,(6.) = | x,. 

See [18], p. 66; according to prop. 28 of [16], this correspondence S, is 
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well-defined, i.e., independent of the choice of ~ E F '  such that ~162 d )  exists. 

In particular, if '/4/'(6, ~) exists, then S,(6")= 0(6) (6) .  
Henceforth, we fix 0 once and for all. 

PROPOSITION 4.1. Suppose ~ and ~,' are near-equivalent cuspidal representa- 

tions of S, as above, and let zr (resp. zr') denote S, (d) (resp. S, (~')). Then for 
some I~ in F ~, 

~' = 0 ( 0  ~ )-'br | x~ ). 

PROOF. By definition, ~r = O(6')(6")~X~, and l r ' =  |174 with ,~ 
(resp.)t ') in F '  such that ~t/'(0 *, d )  (resp. 'W(6*, t~')) exists. Since d" and ~'  are 
assumed to agree almost everywhere, so must the cuspidal representations ~r 
and ~r' agree almost everywhere. Indeed, for almost all v, d-~ and ~"o will be 

equivalent principal series representation, and for such representations, 

0 ( 0  ~)(,~ ) | X,o ~ 0(0~ )(a~ ) -~ 0 ( 6  ~)(,~'o) | X,, ; 

cf. prop. 18 of [16]. Thus, by strong multiplicity one for P G ~ ,  ~r and It' are 
actually equivalent, i.e., 

= o(0") ( ,~ ' )  | x,.. 

Tensoring both sides of this equation by X~ gives 

rr | x~ = 0 ( 0 *  ) (a' ) ,  

and applying O ( 0 ' )  -~ to both sides of this last equation gives 

,~'= o(6~ )-'( ~" | x,.). 

Taking s r = A' gives exactly what was to be proved. 

Each automorphic cuspidal genuine near-equivalence class COROLLARY 4.1.1. 

on S, is of the form 

NE (zr) = {O(O')-'(rr @X,):  ~ E F ~ } 

where rr is some automorphic cuspidal representation of PG~(A)  with the property 

that L(lr | for some ~ in FL 

PROOF By the proposition, any two near-equivalent cuspidal ~ and d '  

belong to one fixed set of the form NE(~r). Conversely,.if 7r is as above, then the 
family of cuspidal representations O(0 r | g~), ,f E F' ,  are near-equivalent. 
Indeed, as remarked in the first part of the proof of the proposition, 
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O0k~oo)-'(Tro@x~o) is independent of ~:v whenever 7r~ is a principal series 

representation. 

COROLLARY 4.1.2. Let 6. denote any genuine cuspidal automorphic representa- 

tion of S ,  which is not a basic Weil representation of the form r~. Let NE (6-) denote 

the set of all cuspidal automorphic representations which are near-equivalent to dr. 

Then NE (6.) is a finite set. 

PROOF. By Corollary 4.1.1, NE(6.) is of the form NE(~r). Let S denote the 

(finite) set of places where 7to belongs to the discrete series for PGL:(Fo). By our 

assumption that 6.~ ro it follows that 6.o(~o) = O(6eo~ @X~o) is a principal 
series representation of So for all v outside S. In particular, 6"v (~v) is independent 

of ~: for all v outside S. 

On the other hand, for v inside S, 6.o (~:~) - -  regarded as a function on F ~ - -  is 

at least constant on cosets of F~ modulo (F~) 2. Indeed 

6.o(b) = O(~b~)'(~-o @)Xb)= [O(~bo) '(7ro)] ~ 

= O(~o)-'(~ro) = 6.o(1), 

where b = a 2 and e = [o ~ o]. Therefore, since S is finite, and the cardinality of 

F~/(F~o) 2 is finite, So is NE(Tr)= NE(6.). 

REMARK 4.1.3. Proposition 4.1 suggests the following local definition of 

near-equivalence. If 6" is a genuine irreducible admissible representation of 

which corresponds to 7r on PGL2(F), then 6" is near-equivalent to 6 if and only 

if 6 . '=  6.(~)= O(~)- ' (~r  @X~) for some ~ in FL The proof of Corollary 4.1.2 

shows that N E ( 6 . ) = { 6 . ( ~ ) : ~ E F  ~} is a finite set, in fact a singleton set 
whenever 6.~ is not a discrete series representation. 

REMARK 4.1.4. When 6. is a cuspidal representation of the form r~ ("distin- 

guished" in the sense of [4]), NE(6.) is infinite. 

COROLLARY 4.1.5. Suppose 6. and 6.' are near equivalent, but not of the form r~. 

Let Y, (resp. Y') denote the (finite) set of places v of F where 6.~ (resp. 6-') is 

square-integrable. Then ~ = ~', and 6'~ -= 6.~ for all v ~_ S. 

PROOF. Obvious from the above discussion. 

4.2. Near-Equivalence and Quaternion Algebras 

Let D denote a non-split quaternion algebra central over F (local or global). 

By Howe's philosophy of dual reductive pairs, it is natural to use Weil's 



124 S. GELBART AND I. PIATETSKI-SHAPIRO lsr. J. Math. 

representation to obtain a correspondence Oo(q~) between (irreducible or 
automorphic) representations of S and the projective group of D ~ analogous to 

the correspondence O(qJ). The result is a diagram 

Oo(q,) 
(5, S) , , (r,  PGL2) 

(4.2.1) ~ . ~  y 

(Tr', PD x ) 

where JL denotes the bijection between representations of GL2 and D x 

constructed in w of [8]. This is the diagram which Waldspurger has analyzed in 

great detail - -  both locally and globally - -  in [18]. A crucial point is that this 

diagram is usually not commutative. On the one hand, this leads to 

Waidspurger's "counterexample" to strong multiplicity one for SA when the 

assumption on central characters is dropped, i.e., to examples of near equivalent 

cusp forms. On the other hand, it is precisely this phenomenon which makes it 

possible to give a truly intriguing description of the near equivalence sets 

NE(5).  
Here is a reformulation of the local result which we conjectured in the original 

draft of this paper and which Waldspurger proves in [18]. 

THEOREM 4.2.2. Suppose 6" is a discrete series representation of S = SL2(F), 
and ~l, is a non-trivial additive character of F (local) such that the Whittaker 

model ~ 6") exists. Then: 

(a) Those ~ in F ~ such that ~4/'( J/~, 6-) fails to exist fill out exactly half the cosets 

of F ~ modulo squares; i.e., the near-equivalence set NE(6-)={6-(~)= 
O(ffe)-l(.n. (~ X~)} consists of precisely two elements; 

(b) Suppose the two elements of NE(6-) are 6- = O(4,)-'(7r) and 6-*= 6-(~:). 
Then 6-*= | e) '(Tr (~)Xe) = Oo(~b)-'('a"), where ~r' is the discrete series rep- 

resentation JL (~-) on D ~ (and D is the unique division quaternion algebra defined 

over F). 

REMARK. We may think of the map 

6----> 6-* 

as an involution which naturally partitions the genuine discrete series represen- 

tations of S into. pairs of representations which coincide with the (square- 
integrable) near-equivalence packets N(6-). In case F = R and 6- is a "holomor- 
phic discrete series representation of lowest weight k/2",  6-* is the correspond- 
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ing "anti-holomorphic discrete series representation of highest weight - k / 2 " .  
In this case, 6-* is actually the conjugate (cf. (1.1.1)) of 6- by the matrix [-~ ~], but 
in general 6-* need have no relation to any conjugate 6-s of 6-. 

The global analog of Theorem 4.2.2 is wonderful but now not so terribly 
surprising (cf. [18]). 

THEOREM 4.2,3. Suppose 6" is a genuine automorphic cuspidal representation of 
SA not of the form r,., and ~, is the (finite) set of places of F where 6-~ is a discrete 
series representation. Then 

2 :~il if !r ~ 0 ,  
INE(6-)I=  l i f .Y .=~ .  

More precisely, for each subset T of s such that I T I is even, define 6-' = (~ 4 '~ by 

81={6 .*~  g v E T ,  
6-~ i f v Z T .  

Then T---* 6-r defines a bijection from the set of such even subsets of s to the set of 
6-' in NE (6-). 

For the proof, see [18]. 
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